
Team Sirius

Software Design

2/12/2021
Project: NPOI Dashboard Web Application

Team Members:
Mario DeCristofaro
Cameron Hardesty

Hannah Park
Matt Rittenback

Sponsors:
Jim Clark

Henrique Schmitt
Adam Schilperoort

Mentor:
David Failing

Version 2.2

Table of Contents

1. Introduction 3

2. Implementation Overview 4

3. Architectural Overview 5

4. Module and Interface Descriptions 7

5. Implementation Plan 9

6. Conclusion 10

2

1. Introduction

The Navy Precision Optical Interferometer (NPOI) is the largest optical Interferometer in the
world. The NPOI is an astronomical long-baseline optical interferometer that has been in
operation in Anderson Mesa since 1994. This NPOI dashboard web application is sponsored by
Jim Clark from the Navy Precision Optical Interferometer Naval Research Laboratory, Remote
Sensing Division as well as Adam Schilperoort who is a software engineer at Lowell
Observatory. This dashboard will provide valuable information to observers at Lowell and
researchers at NPOI. Observers and researchers will be able to use a web system in which they
would be able to interact with graphs of star data relevant to building a better understanding of
the space we seek to explore and travel through in the future.

NPOI and Lowell Observatory work together because of their common interest in space
research and collecting data to better understand binary systems.The shared data comes from
an array of six mirrors spaced tens of meters apart to gather data rather than a single telescope,
and is so large because it combines star light collected to form a high resolution aperture. NPOI
currently collects 3 major pieces of data; instrument data (temperature, humidity, and pressure),
observational (date, time, and operator), and pipeline data (condensed text format of the
collected data). The collected data is invaluable to inform instrument health, performance, and
other diagnostic data. As, it remains unusable to administrators, engineers, observers, and
researchers alike because this data is so dense and time consuming to parse. Also the location
of the data is spread across different machines as well as on directory trees across the network.
Making it difficult and sluggish to analyze.

Team Sirius’s solution to this would be at minimum provide a webpage that will be deployed to
the server at NPOI with graphs that users will be able to interact with, displaying the most
current and previous observational data collected. This webpage will also display the
instrumentation data as plots organized by date. Storing this information in a database and not
as one big html dump will also increase the efficiency and speed of the website. This will issue
an unlaggy graph to illustrate the data collected years prior up until the most recent. We will be
using MySQL to store the collected star data, giving us the ability to use Django’s python
extensions to retrieve that data to then be neatly organized in a graph. The parsed generic text
data will be stored on MySQL using the different identifiers. Having streamlined the
requirements stated by the client, we are confident as a team that we will be able to efficiently
and neatly illustrate the data onto an appealing web application.

3

2. Implementation Overview

The NPOI dashboard will be a more efficient and reliable tool for researchers and engineers to
gain the information needed to complete their daily tasks. The dashboard will produce multiple
graphs to show vacuum pressure, temperature and other diagnostic readings to be analyzed. It
will also allow engineers to adjust the array configuration so that observers can determine which
stars to look at. Finally our web application will produce a display of star observation data. The
assortment of graphs and charts will have the capability to scale easily and flexibly, as well as
be reorganized by date or observer. These visualizations will be easily reconfigurable to suit
each user's individual needs. Team Sirius utilized a process similar to the producer-consumer
pattern where we will break down our project into two categories. The first is the back end
database production, storage, and retrieval. The second is the front end web dashboard data
analysis and organization for consumption.

For the first category of database production, storage, and retrieval Team Sirius has decided to
utilize MySQL for a multitude of reasons. NPOI is utilizing PhpMyAdmin to administer their
current database. PhpMyAdmin is a software tool written in PHP, intended to easily handle
administration of MySQL over the web. Utilizing MySQL in our project will allow for easy
transition between our web dashboard and the currently in place system. Furthermore MySQL is
by far one of the most popular database management systems out there, boasting one of its
largest selling points being extremely fast read operations. It contains all of the features we
need for a database management system. MySQL is designed with focus on the Web, Cloud,
and Big Data. MySQL provides improvements in scale-up and scale-out performance, high
availability, and data integrity, monitoring, and resource management, development agility, and
security. MySQL additionally does not demand much of your computer resources meaning
utilizing MySQL will cost less computer memory or CPU usage compared to other Relational
Database Management Systems. Finally MySQL is compatible with our choice of Django as a
web framework.

For the second category of front end web dashboard data analysis and organization for
consumption, Team Sirius has decided to utilize Django as a web framework. We decided to
adopt Django as our web framework due to the fact that it is developed in Python and its built-in
full stack capabilities are easy to use and well documented. Django comes as a complete
package so that once installed and configured we can start developing right away. Django
follows a Model-View-Template architecture. This Model-View-Template architecture was critical
in our choice of web framework because this style of architecture is essential for us to produce
the best product based on our requirements. The Model helps to handle our database which will
store the collected data. It is a data access layer which handles the collected data. The
Template is a presentation layer which handles the User Interface portion in totality. The View is
used to execute the business logic and interact with a model to carry data while rendering a

4

template. Django offers our team a clear and organized way to carry out the best project
possible while fulfilling our requirements.

3. Architectural Overview

One of the key components in developing an application is building out the architecture that the
system will follow. This allows for an easy to understand vision of how each of the components
of an application work together.Below is a graphical representation of our system diagram and
how each component will be communicating with each other respectively.

Figure 3.1 Software Architecture Diagram

As shown in Figure 3.1 NPOI will be providing the server spaces that will allocate
resources and space to house the dashboard application. From there the application will be built
on the Linux platform provided, which is the Sextons server at NPOI. The application will be
hosted on an Apache server also located on the Sextons server. From there Django will be the

5

framework used to house the application allowing easy access to both front end and back end
operations . MySQL is the back end chosen by the team to hold all of the diagnostic and
research data that will be accessed by the application. The MySQL database will link directly to
the Django framework allowing for easy querying and editing of the database.

3.1 Django Architecture
Django uses an architecture pattern known as Model View Controller or MVC. An MVC

pattern will allow the developer complete control over what the user sees by allowing them to
manipulate every step of the process, from receiving the request all the way through to sending
the data back to the user. This control makes our application highly modular without having to
change the functional foundations.

Figure 3.2 Model View Controller architecture diagram

In Django the view and controller aspects of the architecture are handled by the views.py file
inside of each sub-application. This Python file doesn’t only handle what is shown on any given
page but also the functionality and specific details of the page. It works in tandem with the
models.py file to query the database and present needed information for any given page.
Django then takes the information built into the views.py page and renders the requested web
page presenting it to the user. The web pages for our application will implement a common
design with the use of a Django feature that allows the developer to set a base page on which
all other pages are built off of.

6

4. Module and Interface Descriptions

After covering the overall architecture of how the application will function, now this document will
break down the architecture into five main modules. Below is a detailed description of each of
the modules needed in the application. Along with the description are any needed diagrams to
show how each of the modules communicates with the overall system.

Figure 4.1 Lucid Chart showing the flow between the project’s modules

4.1 Data Parser
The data parser will be responsible for parsing through the data collected at NPOI. The currently
collected data is stored in generic text files. These text files contain essential data, but are
dense and unorganized. In this current form, the data can not be used to its full potential. The
data parser will parse through these text files and pull out data and store it in an organized and
sorted manner in the database.

4.2 Database
The database will be responsible for holding the data collected at NPOI in an organized format,
making it possible to read and write to and from the data. We will read from the database in
order to create the graphs, charts and plots which will be displayed on our web based
dashboard.

7

4.3 Web Based Dashboard
The web based dashboard is responsible for being the first resource that engineers and
researchers go to find information necessary to complete their individual tasks. Hosted on
server space provided by NPOI the web based dashboard application will be an easy to use and
well organized first point of contact for necessary information. This application will be built on
the Linux platform and hosted on an Apache server located on the Sextons server. The web
application will pull data from the database which stores the data collected at NPOI.

4.4 Diagnostic Data
The core module of the project needed by the client is a way to graphically display the variety of
readings that they collect from multiple different sources along the interferometer array. The
centerpiece of this module will be a page to monitor the pressure and temperature readings for
each of the lines along the array as necessary. This data will need to be graphed and displayed
quickly so the engineers can make any adjustments necessary for the interferometer to function
properly. This portion of the application will need to interface with the database in order to pull
the collected data and display it in an easily readable format.

4.5 Array Status
Part of allowing the array to perform smoothly will be ensuring that the operators are able to
understand the current array configuration and status of various portions of the array. This will
entail needing a map of the array with interactive elements to display what portions are currently
operational. With given permissions certain users will be able to edit the configuration if the
status of the array has changed.

8

5. Implementation Plan

With the project broken down into smaller core modules, the team created a schedule
for different tasks to be completed in the upcoming semester. We analyzed which
modules needed to be completed first and prioritized those in our planning process.
Breaking down the project into smaller modules allows the work to be split amongst
team members and promotes project parallelism by having more than one task being
completed at once. For example, in Figure 5.1 below, the team has been working on
Database Integration and while members are wrapping up the process of that task,
other team members have begun working on Array Status Page with the data from the
database.

Figure 5.1 Gantt graph of passed and upcoming milestones of project

As described in the example above, the modules are planned to end as another one
starts to keep the team active and productively working on the project. After all the
project’s modules are implemented by week nine, then the team will work on testing and
refining the project along with creating final report documentation. The team is working
diligently to complete an alpha prototype before March 15th, to share with the team
mentor and client. The team is confident that following the schedule created in this
section will guide it to a successful project completion.

9

6. Conclusion
The goal of this project is to assist the clients at NPOI with a web-based dashboard that

will allow them to view and monitor instrument data of the different metrics the NPOI collects.
Whether it be vacuum pressure, temperature, humidity, or a miscalibration of a computer our
solution will list all the analytics in a neat way. The dashboard will provide a new solution that
allows the client to better maintain the calibration of the NPOI with much less effort and cost of
time. With this more streamlined workflow, the NPOI will produce more reliable data for
astronomers and researchers to pull and utilize from. Without needing all the time it took
previously to dissect and analyze the current generic text format of each star log data.

In conclusion, having the next steps finalized allows us to begin focusing on the main
implementation of the project. Having the project broken down helps the team visualize how the
application will fundamentally work. The application will be implemented using a Linux based
system on Lowell’s Sexton server that then collects the star log data to be parsed by the local
parser. The parser then sends the data directly to the MySQL database. The application will
utilize Django framework to allow for easy integration of the database and the ability of querying
and editing. The front-end of the application will use the integrated database along with Python
graphing extensions to graph the data with interactive features desired by the client. The team is
confident that our provided solution will fit and meet all the functional requirements that were
agreed upon last semester. We are excited to continue the work on the prototype and to be able
to help streamline the work for observers and researchers at Lowell Observatory and NPOI.

10

